Primera ley de Newton: fórmula y ejemplos
La primera ley de Newton es la base de numerosas teorías científicas al introducir la conexión existente entre los movimientos del objeto y las fuerzas que actúan sobre él. La fórmula de la primera ley de Newton es ∑F= 0 ↔ dv/dt= 0 y expresa que un cuerpo persevera su estado de reposo o movimiento, manteniendo su dirección y velocidad constantes, a menos que una fuerza modifique su estado.
Conocida como la ley de la inercia, esta hizo posible el desarrollo de la mecánica clásica y la física del movimiento aplicada en objetos macroscópicos. Considerado uno de los intelectuales más imponentes de la historia, Newton planteó las leyes del movimiento, y otras consideraciones importantes, como el cálculo diferencial y el primer telescopio de reflexión. A continuación, en este artículo de GEOenciclopedia exploramos la fórmula de la primera ley de Newton y ejemplos, además de su importancia en la actualidad.
Qué es la primera ley de Newton o ley de la inercia
La primera ley de Newton, también conocida como la ley de la inercia, expresa que todo cuerpo persevera en su situación de reposo o movimiento, manteniendo su dirección y velocidad constantes, a menos que sobre este actúe una fuerza que modifique su estado. Por tanto, la inercia sería el equivalente a la resistencia de un material a variar su movimiento. Esencialmente, la primera ley de Newton describe cómo los objetos reaccionan ante las fuerzas que actúan sobre ellos.
Para postular sus teorías, Newton se apoyó en los estudios de Aristóteles y Galileo sobre el movimiento de los cuerpos. En este sentido, aplaudió las teorías de Galileo sobre la existencia de la fricción, la cual era responsable de que los objetos en movimiento que podían observarse en la vida cotidiana dejaran de moverse en ausencia de la fuerza motriz. Imaginando un mundo ideal sin fricción, Galileo llego a la conclusión de que un cuerpo mantendría su estado de movimiento de manera constante. Esto dio pie a Newton para introducir la idea de la inercia y añadir la existencia no de una sola fuerza impulsora, sino de varias.
Por tanto, una de las partes más interesantes de la primera ley de Newton es la existencia de varias fuerzas que interactúan sobre el objeto, siendo la resultante de esas fuerzas la que lleva la voz cantante en cuanto a la materialización del movimiento se refiere. A partir de aquí, surgieron las leyes de Newton para el movimiento de los cuerpos, lo que su supuso un punto de inflexión en la dirección de la mecánica clásica.
En términos geológicos, esta ley es crucial para entender cómo los materiales terrestres se comportan ante las diferentes fuerzas que los afectan, como la gravedad, la presión y las fuerzas tectónicas. Comprender esta ley es fundamental para analizar los procesos geológicos que moldean nuestro planeta. A pesar de sus limitaciones, sobre todo en lo que se refiere al terreno de la física cuántica, permite entender el equilibrio de fuerzas en un cuerpo y su resultante de movimiento.
Fórmula de la primera ley de Newton
Para justificar la presencia de una fuerza que conservará un valor constante, y en ausencia de una fuerza que la frene o acelere, Newton estipulo que la resultante de las fuerzas en esta situación resultaban en una relación constante de las variables velocidad y tiempo. Por tanto, la primera ley de Newton se puede expresar de manera matemática mediante la siguiente fórmula:
∑F= 0 ↔ dv/dt= 0
Donde:
- F representa la fuerza aplicada al objeto.
- dv/dt es la velocidad del objeto con respecto al tiempo.
En términos simples, esta fórmula nos dice que una resultante de fuerzas igual a 0, este o no en reposo, describirá un movimiento constante, ya que el cambio de velocidad con respecto al tiempo será igual a 0 también, y por ende constante. Si no se aplica ninguna fuerza externa (F=0) a un objeto en reposo (a=0), este permanecerá en reposo. Del mismo modo, si no hay fuerza actuando sobre un objeto en movimiento, este continuará moviéndose a una velocidad constante en línea recta.
En estas situaciones, la fricción es la responsable de frenar el movimiento y hacer que el objeto se mantenga en condiciones de aceleración igual a 0. De la misma forma se puede intuir que un objeto de mayor masa que mantenga una aceleración determinada necesitará una fuerza mayor que uno más pequeño. A su vez, esta fórmula expone la imposibilidad de traspasar la velocidad de la luz, pues la masa del objeto en cuestión aumentaría tanto que se necesitaría una fuerza proporcional, algo imposible para objetos macroscópicos.
Así, la teoría de la Relatividad de Einstein se impuso sobre las leyes de Newton para explicar la física del movimiento en objetos microscópicos o partículas con la dualidad onda-partícula como los electrones. La primera ley de Newton o ley de la inercia asentó las bases de la mecánica en un entorno donde estas posibilidades parecían olvidadas.
Ejemplos de la primera ley de Newton
Roca en reposo
Imaginemos una roca en reposo en la superficie terrestre. En este caso, la fuerza neta que actúa sobre la roca es prácticamente nula, ya que la gravedad ejerce una fuerza hacia abajo, pero la superficie de la Tierra proporciona una fuerza igual y opuesta hacia arriba, lo que da como resultado una aceleración nula. Como consecuencia, la roca permanece en reposo, siguiendo la primera ley de Newton, conservando su inercia inicial.
En el entorno natural, la roca en sí sufriría una serie de reacciones químicas y efectos físicos que meteorizarían el material y afectarían a su estado de reposo. Tarde o temprano, la roca se convertiría en partículas más pequeñas, donde las fuerzas del medio tendrían una ventaja añadida debido al cambio en la masa del objeto.
Movimiento de una roca
Ahora, consideremos una roca que se encuentra en movimiento horizontal sobre una superficie sin fricción significativa. En este caso, la roca continúa moviéndose a una velocidad constante en línea recta porque no hay fuerzas externas actuando sobre ella que la detengan o cambien su dirección. Nuevamente, esto se alinea con la primera ley de Newton, ya que el objeto en movimiento sigue en movimiento debido a la ausencia de fuerzas que lo detengan.
Sin embargo, la fricción sigue presente en la naturaleza y esa misma roca quedaría expuesta a la configuración del entorno y las fuerzas resultantes que se esforzarían por frenarla o acelerarla.
Importancia de la ley de la inercia
La ley de la inercia es esencial en geología porque nos permite comprender cómo los materiales terrestres reaccionan ante las fuerzas que los afectan. Esto tiene aplicaciones fundamentales en el estudio de la geodinámica, la tectónica de placas y la formación de paisajes geológicos, etc.
Por ejemplo, al analizar la tectónica de placas, podemos aplicar la primera ley de Newton para comprender cómo las placas tectónicas se mueven y cómo las fuerzas internas de la Tierra, como la convección del manto, influyen en su movimiento. Además, esta ley también se utiliza para estudiar la respuesta de los materiales geológicos a las fuerzas de compresión, tensión y cizallamiento, lo que es esencial en la caracterización de pliegues y fallas geológicas, así como sus aplicaciones industriales.
La primera ley de Newton, o ley de la inercia, es una base fundamental en la geología que nos permite comprender cómo los objetos geológicos responden a las fuerzas que actúan sobre ellos. Su aplicación es esencial para el análisis de los procesos geológicos y la comprensión de la dinámica de la Tierra.
Ahora que ya conoces la fórmula y ejemplos de la primera ley de Newton, no te pierdas estos otros artículos sobre las Propiedades generales de la materia y la Segunda ley de Newton: qué es, fórmula y ejemplos.
Si deseas leer más artículos parecidos a Primera ley de Newton: fórmula y ejemplos, te recomendamos que entres en nuestra categoría de Física.
- NASA. La primera Ley de Newton: la ley de la Inercia. Disponible en: https://imagine.gsfc.nasa.gov/observatories/learning/swift/classroom/docs/law1_guide_spanish.pdf
- BIFG. 2006. Geodesia Física. Disponible en: https://rephip.unr.edu.ar/server/api/core/bitstreams/4936c15b-856e-4981-ab36-f50b0973cdd3/content